Prevenção e Tratamento da Caquexia no Câncer de Mama por Probiótico e Curcumina

Conteúdo do artigo principal

Rafaela Agner D’Aquino Zilli
Luisa Amébile Wolpe Simas

Resumo

O objetivo desse artigo é realizar uma revisão sistêmica sobre o tratamento e a prevenção da caquexia no câncer de mama (CM) com o uso de probióticos e curcumina, o processo no qual ocorre degradação proteica, lipólise excessiva e inflamação crônica através de estímulos de HIF-1/IL-6/TGF-β/TNF/NF-kB, desencadeando angiogênese, invasão e metástase tumoral,  levando a um pior prognóstico do câncer de mama. Para atingir o objetivo foi realizada uma revisão sobre os mecanismos bioquímicos pelos quais a caquexia atinge os pacientes com CM e a inibição desses através da utilização de probióticos e curcumina. Os probióticos inibem as vias STAT/NF-kB/COX-2 e estimulam PPARγ, inibindo a inflamação crônica e a lipólise excessiva. A curcumina é eficiente na captação de espécies reativas ao oxigênio (ERO) e na inibição do fator induzível por hipóxia 1 (HIF-1), consequentemente inibindo o estresse oxidativo total do organismo, melhorando a sensibilidade a radioterapia de células neoplásicas e causando diminuição do metabolismo tumoral. De acordo com os artigos estudados, os probióticos e a curcumina são duas estratégias eficientes na prevenção e tratamento da caquexia no CM, melhorando o prognóstico da doença. Os estudos analisados descrevem que, tanto os probióticos como a curcumina são seguros, para administração em pacientes com câncer durante tratamento radioterápico e quimioterápico.

Detalhes do artigo

Como Citar
1.
Zilli RAD, Simas LAW. Prevenção e Tratamento da Caquexia no Câncer de Mama por Probiótico e Curcumina. Braz. J. Nat. Sci [Internet]. 13º de setembro de 2019 [citado 19º de abril de 2024];2(3):139. Disponível em: https://www.bjns.com.br/index.php/BJNS/article/view/72
Seção
Artigo Original

Referências

1. GYAMFI, Jones et al. Multifaceted Roles of Interleukin-6 in Adipocyte–Breast Cancer Cell Interaction. Translational Oncology, [s.l.], v. 11, n. 2, p.275-285, abr. 2018. Elsevier BV. http://dx.doi.org/10.1016/j.tranon.2017.12.009.
2. AKRAM, Muhammad et al. Awareness and current knowledge of breast cancer. Biological Research, [s.l.], v. 50, kosn. 1, p.2-23, 2 out. 2017. Springer Nature. http://dx.doi.org/10.1186/s40659-017-0140-9.
3. CONSUL, Nikita et al. Monitoring Metastasis and Cachexia in a Patient with Breast Cancer: A Case Study. Clinical Medicine Insights: Oncology, Nova Iorque, v. 10, n. 1, p.83-94, 10 jun. 2016. SAGE Publications. http://dx.doi.org/10.4137/cmo.s40479.
4. FUNASAKA, Tatsuyoshi; HOGAN, Victor; RAZ, Avraham. Phosphoglucose Isomerase/Autocrine Motility Factor Mediates Epithelial and Mesenchymal Phenotype Conversions in Breast Cancer. Cancer Research, Estados Unidos, v. 69, n. 13, p.5349-5356, 16 jun. 2009. American Association for Cancer Research (AACR). http://dx.doi.org/10.1158/0008-5472.can-09-0488.
5. WOLCZYK, Dominika et al. TNF-α promotes breast cancer cell migration and enhances the concentration of membrane-associated proteases in lipid rafts. Cellular Oncology, Wroclaw, v. 39, n. 4, p.353-363, 4 abr. 2016. Springer Nature. http://dx.doi.org/10.1007/s13402-016-0280-x.
6. RIVERA, Angeles Lorens. EXPRESION DE RECEPTORES HORMONALES, FACTORES DE CRECIMIENTO Y ONCOGENES EN CANCER DE MAMA EN HUMANOS. 1994. 128 f. Tese (Doutorado) - Curso de Bioquímica, Universidad Complutense de Madrid Facultad de Ciencias Odimicas Departamento de Bioquimica, São Carlos, 1994.
7. JARDÉ, Thierry et al. Molecular mechanisms of leptin and adiponectin in breast cancer. European Journal Of Cancer, França, v. 47, n. 1, p.33-43, jan. 2011. Elsevier BV. http://dx.doi.org/10.1016/j.ejca.2010.09.005.
8. LIAO, Sheng-jun et al. TGF-β1 and TNF-α synergistically induce epithelial to mesenchymal transition of breast cancer cells by enhancing TAK1 activation. Journal Of Cell Communication And Signaling, People’s Republic Of China, p.1-12, 9 fev. 2019. Springer Nature. http://dx.doi.org/10.1007/s12079-019-00508-8.
9. WU, Qi et al. Breast cancer-released exosomes trigger cancerassociated cachexia to promote tumor progression. Adypocite, [s.I.], v. 1, n. 1, p.1-151, 11 dez. 2018. DOI: 10.1080/21623945.2018.1551688.
10. WANING, David L; A GUISE, Theresa. Cancer-associated muscle weakness: What's bone got to do with it?. Bonekey Reports, Indianapolis, v. 4, p.0-1, 20 maio 2015. Portico. http://dx.doi.org/10.1038/bonekey.2015.59.
11. CAVALIERI, Ercole et al. Catechol estrogen quinones as initiators of breast and other human cancers: Implications for biomarkers of susceptibility and cancer prevention. Biochimica Et Biophysica Acta (bba) - Reviews On Cancer, Estados Unidos, v. 1766, n. 1, p.63-78, ago. 2006. Elsevier BV. http://dx.doi.org/10.1016/j.bbcan.2006.03.001.
12. FOULKES, William D. et al (Ed.). Triple-Negative Breast Cancer. New England Journal Of Medicine, Londres, v. 20, n. 363, p.1938-1948, 11 nov. 2010. Massachusetts Medical Society. http://dx.doi.org/10.1056/nejmra1001389.
13. MALLA, Rama Rao et al. A perspective on the diagnostics, prognostics, and therapeutics of microRNAs of triple-negative breast cancer. Iupab, India, v. 1, n. 1, p.1-8, 7 fev. 2019. Springer Nature. http://dx.doi.org/10.1007/s12551-019-00503-8.
14. NELSON, David L.; COX, Michel M.. Princípios de Bioquímica de Lehnger. 6. ed. Porto Alegra: Artmed, 2014. 1220 p.
15. ABU-REMAILEH, M; AQEILAN, R I. Tumor suppressor WWOX regulates glucose metabolism via HIF1α modulation. Cell Death & Differentiation, Ohio, v. 21, n. 11, p.1805-1814, 11 jul. 2014. Springer Science and Business Media LLC. http://dx.doi.org/10.1038/cdd.2014.95.
16. GARBER, Ken. Energy Deregulation: Licensing Tumors to Grow. Science, Michigan, v. 312, n. 1, p.1158-1159, 26 maio 2006. American Association for the Advancement of Science (AAAS). http://dx.doi.org/10.1126/science.312.5777.1158.
17. COURTNAY, Rupert et al. Cancer metabolism and the Warburg effect: the role of HIF-1 and PI3K. Molecular Biology Reports, Melbourne, v. 42, n. 4, p.841-851, 18 fev. 2015. Springer Nature. http://dx.doi.org/10.1007/s11033-015-3858-x.
18. XU, Xiao-yu et al. Bioactivity, Health Benefits, and Related Molecular Mechanisms of Curcumin: Current Progress, Challenges, and Perspectives. Nutrients, China, v. 10, n. 10, p.2-33, 19 out. 2018. DOI: 10.3390/nu10101553.
19. AHMAD, A. et al. Phosphoglucose Isomerase/Autocrine Motility Factor Mediates Epithelial-Mesenchymal Transition Regulated by miR-200 in Breast Cancer Cells. Cancer Research, Estados Unidos, v. 71, n. 9, p.3400-3409, 9 mar. 2011. American Association for Cancer Research (AACR). http://dx.doi.org/10.1158/0008-5472.can-10-0965.
20. KIM, Jung-whan; DANG, Chi V.. Multifaceted roles of glycolytic enzymes. Trends In Biochemical Sciences, Estados Unidos, v. 30, n. 3, p.142-150, mar. 2005. Elsevier BV. http://dx.doi.org/10.1016/j.tibs.2005.01.005.
21. CARSON, James A.; BALTGALVIS, Kristen A.. Interleukin 6 as a Key Regulator of Muscle Mass during Cachexia. Exercise And Sport Sciences Reviews, v. 38, n. 4, p.168-176, out. 2010. Ovid Technologies (Wolters Kluwer Health). http://dx.doi.org/10.1097/jes.0b013e3181f44f11.
22. GREENBERG, Andrew S. et al. Interleukin 6 Reduces Lipoprotein Lipase Activity in Adipose Tissue of Mice in Vivo and in 3T3-L1 Adipocytes: A Possible Role for Interleukin 6 in Cancer Cachexia. Cancer Research, Washington, v. 52, n. 1, p.4113-4116, 01 ago. 1992.
23. MAROOF, Hamidreza et al. the Immune Response Against Lactobacillus acidophilus Could Modulate Breast Cancer in Murine Model. Journal Of Clinical Immunology, Janzan, v. 32, n. 6, p.1353-1359, 19 jun. 2012. Springer Nature. http://dx.doi.org/10.1007/s10875-012-9708-x.
24. LOUMAYE, Audrey; THISSEN, Jean-paul. Biomarkers of cancer cachexia. Clinical Biochemistry, v. 50, n. 1, p.1281-1288, 26 abr. 2017. Elsevier BV. http://dx.doi.org/10.1016/j.clinbiochem.2017.07.011.
25. BOHLEN, Joseph et al. Dysregulation of metabolic-associated pathways in muscle of breast cancer patients: preclinical evaluation of interleukin-15 targeting fatigue. Journal Of Cachexia, Sarcopenia And Muscle, Morgantown, v. 9, n. 4, p.701-714, 26 mar. 2018. Wiley. http://dx.doi.org/10.1002/jcsm.12294.
26. TISDALE, Michael J.. Mechanisms of Cancer Cachexia. Physiological Reviews, v. 89, n. 2, p.381-410, abr. 2009. American Physiological Society. http://dx.doi.org/10.1152/physrev.00016.2008.
27. ESCHER, Pascal; WAHLI, Walter. Peroxisome proliferator-activated receptors: insight into multiple cellular functions. Fundamental And Molecular Machanisms Of Mutagenesis, Lausanne, v. 440, n. 2000, p.121-138, 17 dez. 1999. DOI: 10.1016/S0027-5107(99)00231-6.
28. PATEL, Hetal J.; PATEL, Bhoomika M.. TNF-α and cancer cachexia: Molecular insights and clinical implications. Life Sciences, Gujarat, v. 170, p.56-63, fev. 2017. Elsevier BV. http://dx.doi.org/10.1016/j.lfs.2016.11.033.
29. CAMARGO, Rodolfo Gonzalez. Papel de via de sinalização NF-kB na inflamação do tecido adiposo subcutâneo de pacientes com caquexia associado ao câncer. 2012. 75 f. Tese (Doutorado) - Curso de Biomedicina, Universidade de São Paulo, São Paulo, 2012.
30. RODRIGUES, Adriana; ALMEIDA, Henrique; GOUVEIA, Alexandra. Obesidade: O Papel das Melanocortinas na regulação da Homeostasia Energética Obesity: the role of melanocortins in the regulation of energy homeostasis. Revista Portuguesa de Endocrinologia, Porto, v. 1, n. 1, p.76-86, 01 jan. 2011.
31. ORLOVA, Zhanna et al. IKKε regulates the breast cancer stem cell phenotype. Biochimica Et Biophysica Acta (bba) - Molecular Cell Research, México, v. 1866, n. 4, p.598-611, abr. 2019. Elsevier BV. http://dx.doi.org/10.1016/j.bbamcr.2019.01.002.
32. AL, Cheng et al. Phase I clinical trial of curcumin, a chemopreventive agent, in patients with high-risk or pre-malignant lesions. Anticancer, Taiwan, v. 2, n. 1, p.895-900, 21 ago. 2001.
33. MCDONALD, J. T. et al. Ionizing Radiation Activates the Nrf2 Antioxidant Response. Cancer Research, Los Angeles, v. 70, n. 21, p.8886-8895, 12 out. 2010. American Association for Cancer Research (AACR). http://dx.doi.org/10.1158/0008-5472.can-10-0171.
34. CORIAT, R. et al. Sorafenib-Induced Hepatocellular Carcinoma Cell Death Depends on Reactive Oxygen Species Production In Vitro and In Vivo. Molecular Cancer Therapeutics, França, v. 11, n. 10, p.2284-2293, 17 ago. 2012. American Association for Cancer Research (AACR). http://dx.doi.org/10.1158/1535-7163.mct-12-0093.
35. BEATRICE; LABORATORY, Samuel A. Seaver. Production of Large Amounts of Hydrogen Peroxide by Human Tumor Cells. Cancer Research, Nova Iorque, v. 51, n. 1, p.794-798, 1 fev. 1991. http://cancerres.aacrjournals.org/content/canres/51/3/794.full.pdf.
36. CB, Simone et al. Antioxidants and other nutrients do not interfere with chemotherapy or radiation therapy and can increase kill and increase survival, Part 2. Send To Altern Ther Health Med, Lawrenceville, v. 13, n. 2, p.7-40, 01 abr. 2007. Original Reserch, drsimone.com/Antioxidants_Part_I.pdf.
37. FUJISAWA, Seiichiro; KADOMA, Yoshinori. Anti- and Pro-oxidant Effects of Oxidized Quercetin, Curcumin or Curcumin-related Compounds with Thiols or Ascorbate as Measured by the Induction Period Method. In Vivo, Tokyo, v. 20, n. 1, p.39-44, 17 out. 2005. http://iv.iiarjournals.org/content/20/1/39.long.
38. JAVVADI, P. et al. The Chemopreventive Agent Curcumin Is a Potent Radiosensitizer of Human Cervical Tumor Cells via Increased Reactive Oxygen Species Production and Overactivation of the Mitogen-Activated Protein Kinase Pathway. Molecular Pharmacology, Philadelphia, v. 73, n. 5, p.1491-1501, 1 fev. 2008. DOI: 10.1124/mol.107.043554.
39. ADIWIDJAJA, Jeffry; MCLACHLAN, Andrew J.; BODDY, Alan V.. Curcumin as a clinically-promising anti-cancer agent: pharmacokinetics and drug interactions. Expert Opinion On Drug Metabolism & Toxicology, Australia, v. 13, n. 9, p.953-972, 10 ago. 2017. Informa UK Limited. http://dx.doi.org/10.1080/17425255.2017.1360279.
40. MOSS, Ralph W.. Do Antioxidants Interfere With Radiation Therapy for Cancer? Integrative Cancer Therapies, [s.l.], v. 6, n. 3, p.281-292, set. 2007. SAGE Publications. http://dx.doi.org/10.1177/1534735407305655.
41. LÄÄKÄRIKESKUS, Kruunuhaan et al. Treatment with antioxidant and other nutrients in combination with chemotherapy and irradiation in patients with small-cell lung cancer. Anticancer Res, Helsinki, v. 12, n. 3, p.599-606, 01 maio 1992. PubMed, https://www.ncbi.nlm.nih.gov/pubmed/1320355.
42. RYAN, Julie L. et al. Curcumin for Radiation Dermatitis: A Randomized, Double-Blind, Placebo-Controlled Clinical Trial of Thirty Breast Cancer Patients. Radiation Research, New Iorque, v. 180, n. 1, p.34-43, jul. 2013. Radiation Research Society. http://dx.doi.org/10.1667/rr3255.1.
43. GALATI, Giuseppe et al. Prooxidant activity and cellular effects of the phenoxyl radicals of dietary flavonoids and other polyphenolics. Toxicology, Londres, v. 177, n. 2002, p.91-104, jan. 2002. DOI: 10.1016/S0300-483X(02)00198-1.
44. BACHMEIER, Beatrice E. et al. The Chemopreventive Polyphenol Curcumin Prevents Hematogenous Breast Cancer Metastases in Immunodeficient Mice. Cell Physiol Biochem, Milão, v. 19, n. 1, p.137-152, 21 nov. 2006. Karger AG. http://dx.doi.org/10.1159/000099202.
45. KELLOFF, Gary J. et al. Progress in Cancer Chemoprevention. Annals Of The New York Academy Of Sciences, California, v. 889, n. 1, p.1-13, out. 1999. DOI: 10.1111/j.1749-6632.1999.tb08718.x Cited by: 79.
46. TAN, Suryani et al. The degradation of curcuminoids in a human faecal fermentation model. International Journal Of Food Sciences And Nutrition, Parma, v. 66, n. 7, p.790-796, 3 out. 2015. Informa UK Limited. http://dx.doi.org/10.3109/09637486.2015.1095865.
47. HATCHER, H. et al. Curcumin: From ancient medicine to current clinical trials. Cellular And Molecular Life Sciences, Winston-salem, v. 65, n. 11, p.1631-1652, 7 mar. 2008. Springer Nature. http://dx.doi.org/10.1007/s00018-008-7452-4.
48. SINGH, Sanjaya; AGGARWAL, Bharat B.. Activation of Transcription Factor NF-κB Is Suppressed by Curcumin (Diferuloylmethane). Journal Of Biological Chemistry, Texas, v. 270, n. 42, p.24995-25000, 13 jul. 1995. American Society for Biochemistry & Molecular Biology (ASBMB). http://dx.doi.org/10.1074/jbc.270.42.24995.
49. HEJAZI, Jalal et al. Effect of Curcumin Supplementation During Radiotherapy on Oxidative Status of Patients with Prostate Cancer: A Double Blinded, Randomized, Placebo-Controlled Study. Nutrition And Cancer, Taylor, v. 68, n. 1, p.77-85, 2 jan. 2016. Informa UK Limited. http://dx.doi.org/10.1080/01635581.2016.1115527.
50. PONTUAL, Yasmin de Oliveira. Avaliação dos polimorfismos do gene ABCB1 associados a fatores clínicos como preditores da tuberculose-resistente. 2017. 82 f. Tese (Doutorado) - Curso de Ciências, Instituto Nacional de Infectologia Evandro Chagas, Rio de Janeiro, 2017.
51. GARCEA, G et al. Detection of curcumin and its metabolites in hepatic tissue and portal blood of patients following oral administration. British Journal Of Cancer, [s.l.], v. 90, n. 5, p.1011-1015, mar. 2004. Springer Nature. http://dx.doi.org/10.1038/sj.bjc.6601623.
52. SHOBA, Guido et al. Influence of Piperine on the Pharmacokinetics of Curcumin in Animals and Human Volunteers. Planta Medica, Bangalore, v. 64, n. 04, p.353-356, maio 1998. Georg Thieme Verlag KG. http://dx.doi.org/10.1055/s-2006-957450.
53. RANJBAR, Sheyda et al. Emerging Roles of Probiotics in Prevention and Treatment of Breast Cancer: A Comprehensive Review of Their Therapeutic Potential. Nutrition And Cancer, Tehran, v. 71, n. 1, p.1-12, 2 jan. 2019. Informa UK Limited. http://dx.doi.org/10.1080/01635581.2018.1557221.
54. XIN, Xiaohua et al. Peroxisome Proliferator-activated Receptor g Ligands Are Potent Inhibitors of Angiogenesis in Vitro and in Vivo. The Journal Of Biological Chemistry, California, v. 274, n. 3, p.9116-9121, 25 nov. 1998. American Society for Biochemistry & Molecular Biology (ASBMB). http://dx.doi.org/10.1074/jbc.274.13.9116.
55. RH, Adirareddy; SG, Vemuri; UM, Palempalli. Probiotic Conjugated Linoleic Acid Mediated Apoptosis in Breast Cancer Cells by Downregulation of NFκB. Asian Pacific Journal Of Cancer Prevention, Andhra Pradesh, v. 17, n. 59, p.3395-3403, 07 jul. 2016. DOI: 10.14456/apjcp.2016.107/APJCP.2016.17.7.3395.
56. LANDETE, José María et al. Probiotic Bacteria for Healthier Aging: Immunomodulation and Metabolism of Phytoestrogens. Biomed Research International, Madrid, v. 2017, p.1-10, 2017. Hindawi Limited. http://dx.doi.org/10.1155/2017/5939818.
57. PETRIDOU, Anatoli; MOUGIOS, Vassilis; SAGREDOS, Angelos. Supplementation with CLA: Isomer incorporation into serum lipids and effect on body fat of women. Lipids, [s.l.], v. 38, n. 8, p.805-811, ago. 2003. DOI: 10.1007/s11745-003-1129-2.
58. MCCARTY, M. F.. Activation of PPARgamma may mediate a portion of the anticancer activity of conjugated linoleic acid. Ideal, San Diego, v. 1, n. 1, p.187-188, 17 mar. 2000. Elsevier BV. http://dx.doi.org/10.1054/mehy.1999.1010.
59. KIM, Eun Ji et al. Conjugated Linoleic Acid Downregulates Insulin-Like Growth Factor-I Receptor Levels in HT-29 Human Colon Cancer Cells. The Journal Of Nutrition, [s.l.], v. 133, n. 8, p.2675-2681, 1 ago. 2003. Oxford University Press (OUP). http://dx.doi.org/10.1093/jn/133.8.2675.
60. ARAGÓN, Félix et al. Inhibition of Growth and Metastasis of Breast Cancer in Mice by Milk Fermented With Lactobacillus casei CRL 431. Immunotherapy Journal, San Miguel, v. 38, n. 5, p.185-196, 05 jun. 2015. Ovid Technologies (Wolters Kluwer Health). http://dx.doi.org/10.1097/cji.0000000000000079.
61. MIGLIETTA, Antonella et al. Conjugated linoleic acid induces apoptosis in MDA-MB-231 breast cancer cells through ERK/MAPK signalling and mitochondrial pathway. Cancer Latters, Turin, v. 234, n. 1, p.149-157, 20 mar. 2005. Elsevier BV. http://dx.doi.org/10.1016/j.canlet.2005.03.029.
62. BRAISSANT, Olivier; WAHLI, Walter. Differential Expression of Peroxisome Proliferator-Activated Receptor-α, -β, and -γ during Rat Embryonic Development. Endocrinology, Lausanne, v. 139, n. 6, p.2748-2754, 1 jun. 1998. The Endocrine Society. http://dx.doi.org/10.1210/endo.139.6.6049.
63. TISDALE, Michael J.. Mechanisms of Cancer Cachexia. Physiological Reviews, Birmingham, v. 89, n. 2, p.381-410, abr. 2009. American Physiological Society. http://dx.doi.org/10.1152/physrev.00016.2008.
64. LEMBERGER, Thomas; DESVERGNE, Beatrice; WAHLI, Walter. PEROXISOME PROLIFERATOR-ACTIVATED RECEPTORS: A Nuclear Receptor Signaling Pathway in Lipid Physiology. Cell Dev, [s.i.], v. 12, n. 1, p.336-363, 09. Annual Reviews. http://dx.doi.org/10.1146/annurev.cellbio.12.1.335.
65. KADIRAREDDY, Rashmi Holur; GHANTAVEMURI, Sujana; PALEMPALLI, Uma Maheswari Devi. Probiotic Conjugated Linoleic Acid Mediated Apoptosis in Breast Cancer Cells by Downregulation of NF-қB. Asian Pac J Cancer Prev, Andhra Pradesh, v. 17, n. 7, p.3395-3403, 01 jan. 2016. DOI: 10.14456/apjcp.2016.107/APJCP.2016.17.7.3395.
66. MAGGIORA, Marina et al. An overview of the effect of linoleic and conjugated-linoleic acids on the growth of several human tumor cell lines. International Journal Of Cancer, [s.l.], v. 112, n. 6, p.909-919, 2004. Wiley. http://dx.doi.org/10.1002/ijc.20519.
67. YAZDI, Mohammad Hossein et al. Oral administration of Lactobacillus acidophilus induces IL-12 production in spleen cell culture of BALB/c mice bearing transplanted breast tumour. British Journal Of Nutrition, Tehran, v. 104, n. 02, p.227-232, 2 mar. 2010. Cambridge University Press (CUP). http://dx.doi.org/10.1017/s0007114510000516.
68. WYKE, S M; RUSSELL, S T; TISDALE, M J. Induction of proteasome expression in skeletal muscle is attenuated by inhibitors of NF-κB activation. British Journal Of Cancer, Birmingham, v. 91, n. 9, p.1742-1750, 12 out. 2004. Springer Nature. http://dx.doi.org/10.1038/sj.bjc.6602165.
69. ZAMBERI, Nur Rizi et al. The Antimetastatic and Antiangiogenesis Effects of Kefir Water on Murine Breast Cancer Cells. Integrative Cancer Therapies, Malaysia, v. 15, n. 4, p.53-66, 26 jul. 2016. SAGE Publications. http://dx.doi.org/10.1177/1534735416642862.
70. CHEN, Chujian; CHAN, Hing Man; KUBOW, Stan. Kefir Extracts Suppress In Vitro Proliferation of Estrogen-Dependent Human Breast Cancer Cells but Not Normal Mammary Epithelial Cells. Journal Of Medicinal Food, China, v. 10, n. 3, p.416-422, set. 2007. Mary Ann Liebert Inc. http://dx.doi.org/10.1089/jmf.2006.236.
71. ARAGÓN, Félix et al. The administration of milk fermented by the probiotic Lactobacillus casei CRL 431 exerts an immunomodulatory effect against a breast tumour in a mouse model. Immunobiology, Argentina, v. 219, n. 6, p.457-464, jun. 2014.